Src tyrosine kinase as a drug target in Duchenne muscular dystrophy: effects of two different formulations of dasatinib in exercised *mdx* mouse

<u>Brigida Boccanegra</u>¹, Paola Mantuano¹, Francesca Sanarica¹, Elena Conte¹, Giulia Maria Camerino¹, Annalisa Cutrignelli¹, Nunzio Denora¹, Antonietta Mele¹, Michela De Bellis¹, Annamaria De Luca¹

cSrc Tyrosine Kinase (TK) is a redox-sensitive protein overexpressed in dystrophin-deficient muscles and can be overactive due to excessive production of reactive oxygen species; cSrc-TK may contribute to β-dystroglycan (β-DG) degradation and to the impairment of mechanical-metabolic coupling, with consequent reinforcement of damaging signaling. Thus, cSrc-TK seems a potential drug target in Duchenne muscular dystrophy (DMD). We performed a proof-of concept preclinical study in treadmill-exercised mdx mice by in vivo subcutaneous administration of dasatinib, a competitive inhibitor of cSrc-TK (5 mg/kg, 3 times/week), already available for clinical use as antitumor drug. Although well tolerated, the treatment had no significant efficacy on pathologyrelated in vivo and ex vivo indices of muscle force. However, an increase in the expression of nonphosphorylated β -DG was found. In order to overcome possible pharmacokinetic issues, we tested the effects of a novel oral formulation of dasatinib in exercised mdx mice, also suitable for paediatric use. The drug was included in a complex with hydroxypropyl-β-cyclodextrin (HP-β-CD) and administered in drinking water to exercised mdx mice at two different doses (10 mg/kg and 20 mg/kg) for 12 weeks. The outcomes were evaluated by means of in vivo and ex vivo approaches on dystrophy-related endpoints. Dasatinib significantly increased maximal forelimb grip strength in treated animals, with values of 0.187 \pm 0.006 kg for mdx + dasatinib 10 mg/kg and 0.188 \pm 0.005 kg for $mdx + dasatinib 20 mg/kg versus 0.156 \pm 0.01 kg of untreated mice (p < 0.0002; n = 8/group). In$ parallel, in vivo torque force of plantar flexor muscles of treated mdx mice showed a clear trend toward increase at low frequencies of stimulation (+55% for mdx + dasatinib 10 mg/kg and + 40% for mdx + dasatinib 20 mg/kg versus untreated mice at 30 Hz). An ultrasonography assessment of diaphragm function showed an increased contractile amplitude in treated animals with respect to the untreated ones, which was more evident in mdx + dasatinib 10 mg/kg. The treatment also decreased plasma levels of creatine kinase in treated animals (recovery scores: 44% and 31% in mdx + dasatinib 10 mg/kg and mdx + dasatinib 20 mg/kg, respectively) and of lactate dehydrogenase (recovery score: 24% in mdx + dasatinib 10 mg/kg). Our preliminary results support the interest in the new oral formulation of dasatinib with HP-β-CD for the treatment of DMD. Further histological and biochemical analysis are ongoing along with the pharmacokinetic assessment of this novel formulation (supported by NL-DPP).

E-mail dell'autore che concorre ai premi: brigida.boccanegra@uniba.it

¹Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.